例句
1.回溯过往,我们很难想象先民是怎么开始新生活的。
2.在战争中使用军犬的历史可以回溯到古希腊的晚期。
1. 回顾;回忆。
引
1. 为了使大家明了何以这个两条路线问题是一切中国问题的关键所在,必须回溯一下我们抗日战争的历史。
《论联合政府》三
毛泽东
2. 回溯廿年纠葛,知早有伏迹藏踪。
《满庭芳·感事书怀》词
陈毅
“回溯”是一个汉语词语,拼音为“huí sù”,主要意思是回顾、回忆或向上推导。在不同的语境中,回溯可有以下几种含义:
回顾与回忆:指对过去的事情进行回想或回忆。例如,“回溯过去,瞻望未来”。
向上推导:指从结果往回推导原因或过程。例,“这种鱼有回溯的习惯”。
计算机科学中的回溯算法:这是一种搜索法,通过尝试不同的选择并逐步构建解决方案,当发现当前选择无法构成有效解时,会“回溯”到上一步,尝试其他选择。这种方法常用于解复杂问题,如组合问题、路径问题等。
语言学中的回溯读音:指对某个字的读音进考证,从历史发展的角度探究其在不同地区和时期的演变。
编译器中的回溯现象在语法分析过程中,当遇到不符合语法规则或存在歧义的输入源代码时,编译器需要重新回到之前的状态进行尝试的过程。
心理学中的记忆回溯:指从记忆中检索重复信息或某概念的能力。
“回溯”既可以指时间上的回顾和追溯,也可以指在算法、语言学等领域中的特定技术或现象。
回溯算法在计算机科学中有着广泛的应用,特别是在解决组合优化、搜索和排列问题时。以下是一些具体的应用案例和详细解析:
candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。candidates
中的数字可以无限制重复被选取。candidates = [2,3,6,7]
和 target = 7
,输出 ``。实现:通过递归和回溯,逐步尝试所有可能的组合,直到找到所有满足条件的组合。
全排列问题:
实现:定义一个递归函数 backtrack
,通过递归调用实现对路径的选择和撤销,最终将符合条件的路径添加到结果列表中。
子集问题:
实:通过递归遍历所有可能的子集,利用 start
参数控制子集的起始位置,从而生成所有可能的子集。
括号生成问题:
n
,生成所有长度为 2n
的合法括号组合。实现:遵循左括号数量等于括号总数的性质,以及左括号数量大于或等于右括号数量的条件,通过递归生成所有合法的括号组合。
数独求解:
实现:利用回溯算法尝填入数字并逐步验证数独的解,如果当前选择不可能导致可行解,则返回上一步,尝试其他选择。
八皇后问题:
实现:通过递归和回溯,逐步尝试所有可能的放置方案,直到找到所有满足条件的放置方式。
电子设计动布线问题:
这些案例展示了回溯算法在解决复杂问题中的灵活性和实用性。
在语言学中,回溯读音的历史演变过程是一个复杂而多维的研究领域。这一过程涉及对语言音系随时间变化的系统性分析和重建。以下是基于我搜索到的资料对这一过程的详细描述:
历史语音学的定义与方法: 历史语音学(Diachronic Phonology)是语音学的一个分支,专注于研究和构建关于语音和音系随时间变化的理论。例如,它探讨了英语单词“sea”和“see”从不同的元音音演变成现在发音的过程。
中古音的变迁与发展: 中古音通常被划为东汉至南唐五代时期,学术界以《切韵》和《一切经音义》作为代表,讨论其性质。杨教授通过历史史料和专家文献论证,阐述了中古音的变过程,包括洛阳音、洛下音、金陵音、北魏汉语、长安音等不同阶段的音系变化。
汉语读音的变化阶段: 艾约瑟将汉语读音的变化分为三个阶段:第一阶段声母基本上都是浊辅音,第二阶段部分浊辅音变成了清辅音,第三阶段入声逐渐消失。他还进一步阐述了构拟古音的系统方法,例如通过形声字的声旁、古代诗歌的韵律、佛教文献中音译的梵语词汇、中国学者编撰的韵书、日语蒙古语、朝鲜语和交趾语对汉字的音译以及汉语方言等各方面的材料,可以复原古代汉语的读音。
统技术在语言演变中的应用: 研究人员开发了一种统计技术,用于检测语言进化历史中的“协调音变”。这种术可以帮助研究人员追溯单词和语言回到它们最早的共同祖先或祖先,甚至可能追溯到数千年前的语言。
古代语言的演变与重建: 古代语言如古英语和古汉语在历史长河中经历了显著的变化。古英语在5世纪至11世纪使用,其语法结构与德语和冰岛语相似,词汇保留了原始的古英语特征。古汉语在14世纪至公元早期使用,经历了从甲骨文到简化和繁体字的演变,发音至今仍是个谜。
社会文化因素与语言接触的影响: 语言演变不仅受到内部音变的影响,还受到社文化因素和语言接触的显著影响。例如,拉丁语向西班牙语的演变、英语中的“wh-合并”现象、美国南部语音特点的变化以及德国德语方言中的读音差异都展示了社会文化、语言接触和语言变体如何共同作用于读音的形成和消失。
语言演变的机制影响: 语言演变是一个复杂的过程,受到社会、文化和认知环境的影响。推动语言变化的因素包括内部变化音变、语法化和语义变化,以及外部变化如语言接触导致的借用和混合语种的形成。这些变化对语言理论产生了深远影响,如音系理论和句法理论。
元音大推移: 元音大推移是英语历史上一个显著的语变化时期,从14世纪开始,一直持续到16世纪。这一时期元音尤其是长元音发生音变,辅音基本不变。语言接触加快了语言的语音演变程。
英语拼读规律的历时性研究: 英语经历了古英语、中古英语、期现代英语和后期现代英语四个阶段。现代英语的读音与拼写严重不一致,这种不一致的历史渊源可以从音系学角度探求,并揭示拼写与读音间的规律。
综上所述,回溯读音的历史演变过程涉及多个层面的分析和研究,包括历史语音学的方法、中古音的变迁、古代语言的演变、社会文化因素和语言接触的影响、以及具体的语音变化事件如元音大推移等。
在编译器的语法分析中,回溯现象是指在尝试匹配输入序列时,如果当前选择的产生式不正确,序会回退到之前的状态,重新选择其他可能的产生式进行匹配。这种现象通常发生在自顶向下或自底向上的语法分析中,当存在多个候选产生式且无法确定哪个是正确选择时,就会发生回溯。
回溯的主要原因包括:1. 义:当文法存在多个最左推导时,会导致二义性问题,此时需要使用回溯来试探性地选择一个产生式。2. 左递归:左递归(如A -> Au)会导致无穷推导,从而引发回溯问题。为避免回溯,通常不将自顶向下分析法应用于含左递归的语法。3. 候选式公共前缀:当非终结符有多个候选式存在公共前缀时,也会导致回溯问题。
回溯的后果是效率极低且代价极高,因为每次回溯都需要重新扫描一遍输入文本,这会消耗大量的计算资源和时间,可能导致程序进入死循环或陷入无限递归。此外,回溯还无法指出语法错误的确切位置。
为了消除回溯,可以采用以方法:1. 构造LL(1)文法:通过满足特定条件的文法(如不含左递归、候选首符集两两不相交等),可以实现确定的自顶向下分析,从而彻底除回溯。2. 提取左因子:通过提取左因子来规避候选式公共前缀引起的回溯问题。3. 递下降分析法和预测分析法:这些方法通过构建预测分析表或递归地调用自身来减少回溯,提高分析效率。4. 超前扫描:通过超前扫描的方式,根据输入符号的前几个Token来决定选择哪个产生式,从而避免回溯。
心理学中记忆回溯的机制涉及多个方面,包括神经生物学、认知心理学和行为心理学等。记忆回溯(retrospective memory)是指对过去经历的人、言语及任务的记忆,它包括陈述性记忆、感觉记忆和程序记忆等。这种记忆类型在学习和记忆过程中起着至关重要的作用。
突触连接的强化:Hebb提出的学习规则认为,学习发生在神经元突触连接上,表现为突触连接的强化。Kandel通过研究海兔的缩腮反射,证实了这一理论,证明学习是通过改变突触化学连接强度和效率导致行为改变。
长时程增强(LTP) :海马内的一种神经通路中存在高频动作电位,能使该通路的突触活动增加,这是长时忆的暂时性储存场所。利用长时程增强机制,海马能对新习得的信息进行为期数小时乃至数周的加工,然后再将这种信息传输到大脑皮层。
神经可塑性:记忆的可塑性导致与记忆相关的神经传导介质增加、神经触肥大和基因表现改变。记忆是不断重构的,易受时间、情感、身心疾病和精神作用物质的影响。
编码、存储和检索:记忆涉及对过去经验的编码、存储和检索,影响后续行为。重复关注或练习对记忆产生累积效应,使技能表演、诗歌背诵和阅读理解成为可能。
遗忘机制:遗忘是由于无法检索或经验生理效应的实际改变或丧失。实践或复习有助于构建和维持任务或学习材料的记忆,而缺乏实践会导致遗忘。
记忆测试:记忆测试是一种标准化评估工具,旨在测量我们的记忆力。通过熟的线索和情境,可以激活相应的记忆网络,从而增强检索过程,提高记忆力和准确性。
日常记录和关联联想:通过写日记、记录重要事件等方式,强化对经历的记忆。将新的记忆与已的知识和经验进行关联,帮助记忆的巩固和提取。
定期回顾:定期回顾过去的经历和学习的内容,加记忆。参与记忆训练活动,如记忆游戏、拼图等,每月对过去一个月的记忆进行系统梳理和总结。
学习效率:记忆回溯机制在学习过程中至关重要,因为它允许存储和检索学到的信息。通过有效的记忆回溯,可以更好地应对工作和生活中的决策,提升人际交往能力,并提高学习效率。
心理治疗:心理治疗通过情感调节和记忆重塑来解决常见的记忆问题,如健忘、失神、空白、错认等。通过揭露和反省内隐规则,结合外显学习新的模式,直到新的惯性行为根深蒂固地并入内隐记忆系统中。
虚假记忆:大脑有时会创造虚假记忆,这可能源于对过去事件的误解或完全虚构。识别和处理虚假记忆对于心理治疗和日常生活中保持清晰的记忆非重要。
在解决复杂问题时,回溯算法与其他算法(如动态规划)相比具有以下优势和劣势:
回溯算是一种通用、灵活的算法,适用于许多组合优化问题。在解决一些中小规模问题或需要找到所有解的问题时,回溯算法具有一定的优势。然而,对于大规模问题或需要高效解决的问题,可能需要考虑其他更高效的算法,如动态规划、分治法等。